Finding Fault with Faults: A Case Study

Allen P. Nikora John C. Munson
Jet Propulsion Laboratory Computer Science Department
4800 Oak Grove Drive University ofldaho
Pasadena, CA 91109-8099 Moscow, ID 83844-1010
Mail Stop 264-805 vox: (208)885-7789
vox: (818)393-1104 fax: (208)8885-9052
fax: (818)393-7830 Jmunson@cs. uidaho. edu

Allen. P. Nikora@jpl. nasa.gov

ABSTRACT

Over the past several years, significant effort has been devoted to the process of predicting software system
fault content during the earlier development phases. Much of this work has involved relating structural
characteristics of software systems (e.g. complexity measurements of the source code and design) to the number of
Jaults in the system. We describe our effort in extending this work beyond the initial software construction. Our
area offocus is determining the rate offault injection over a sequence of successive builds, first observing that
software faults may be seen to fall into two distinct classes - some faults are incorporated during the initial coding
effort, while others are added in successive software builds. Experience in working with NASA software
development efforts is discussed, including practical issues in obtaining data and assuring its validity. One of the
most significant topics discussed is the methodology for the precise determination of a fault condition and the
mapping of software faults to individual program modules. We examine the results obtained to date, and conclude

with a description of our plans to extend this work in the future.

FINDING FAULT WITH
FAULTS-
A CASE STUDY

Allen P. Nikora John C. Munson
Jet Propulsion Laboratory Computer Science Department
California Institute of Technology University of Idaho
Pasadena, CA Moscow, ID
Allen.P.Nikora@jpl.nasa.gov jmunson@cs.uidaho.edu

Annual Oregon Workshoz on Software Metrics
May 11-13, 1997
Coeur d’Alene, ID

AOWSM 97A0WSM-97 slide 1

+ Motivation

+» Fault Content Model
+» Counting Faults

+ Fault surrogates

+ Rate of fault injection
+ Risk Assessmsnt

+ Future Work

AOWSM 97A0WSM-97 slide 2

¢ oplIs L6-NSMOV.6 WSMOY

sainseaw panosdwi asay} Buisn ssasoid Juawdojonap
ay} pue ainonJls walsAs ay} JOAO [0JJUOD 13}}A(LIBSSY

ysu feuonesado ssasse 0} wolsAs
atemyos e Buunseauw Jo spoyjaw panoidwi dojanaq«

S|eoy)
-ssaibouad ul [j13s uswdojanap ajiym Ayjenb pue ‘suondo
ainonJys woalsAs ‘suoipdo ssasoad Juswdojanap usaamiaq o
apeu) 0} 9|ge aq 1shw ‘Lioya uswdojanap e taneq abeuew o] -
"sol1sli9)oeieyo
ssa204d Juswdojonap pue ainlonays s, wdlsAs 10} JUNoIde
1.uop Aujiqelal aszemyos bunoipald Jo spoylaw Juauny

UoIjBAI

Ht Content Model

General Model Formulatbow

f(sys, pr, er) f(sys, pr, er) f(sys, pr, er)

g(sys, pr, er) g(sys, pr, er) g(sys, pr, er)

f and g are functions:
sys represents characteristics of the software product
pr represents characteristics of the software development process
er represents the number of fauits already in the system

AOWSM 97A0WSM-97 slide 4

It Content Model (cont’d)

General Model Formulation (cont’d):

Input:

Imi
Im|
Im

LEEER

ProbabuBy of Occumrencs
°
»

Output:

AOWSM 97A0WSM-97 slide 5

t Content Model (cont’d)

Advantages of the new model:

- Ability to make resource/risk tradeoffs earlier in the
development effort.

Ability to refine and update predictions as more
detaile o information about product, risk, and process
becomes avai able.

« Ability to compute confidence values.

Predictions are in terms msaningful to users and
developers.

Dsvslopment and use of model requires the
ability to co o »t accurately faults.

AOWSM 97A0WSM-97 slide 6

ounting Faults

+ Fault vs. Failure counts

+ Post->e velopment Fault Identification
+ Fault Types

» Fault Type Composition

AOWSM 97A0WSM-97 slide

It vs. Failure Counts

+ Failure counts could be used if:
<*Number of faults related to number of failures

“» Sistribution of number of faults per faillre had low
variance

0.5

0123454678 910

< Actual situation is shown on ne xt slide
AOWSM 97A0WSM-97 slide 8

D © Fauilts per Faifure

.. £
lllllll 1;{\)1?:
BERRRMRS oy a5 &
4L et i v
l.\r!\....\x.ﬂ.lll‘ﬁ..\l m
L
BERRSE S
J\\(1l1\1)
-1
1]
il
1 -
N i ;Mv ~ wn™
w P
o
N
Number of Failures 3 > =
w 3 &N
o
- w @ Number of Faults
[
4 i
~ g7
[32)
0 W 0
~ oW
0

AOWSM 97A0WSM-97

Frequency

slide 9

m\thmi Identification

<+ Available data
“Institutional problem reporting systems
+SCCS files for all delivered versions of software

+ ldentifying faults
+Moouls repaire . i . Increment “x” in response to a failure

<+ Assume changes in incremant “x” ooe solely to fault
repair

<+ Difference between “x-1” and “x” identifies changes
(faults)

<. 0ox for ear iest Increments in which faults occur

Post-dsvelopme .t fault identification is primarily a

AOWSM 97AOWSM-97 manual process slide 10

“Taxonomy based on corrective actions taken in
response to failure reports

<+ Faults i»n variabls usage
<+ Definition and ose of new variables

< Redefinition of existing variables (e.g. changing
type from float to double)

“+Variable deletion

<+ Assignment of a different valoe to a variable
<+ Faults involving constants

“Definition and os3 of new constants

“»Constant definition deletion

AOWSM 97A0OWSM-97 slide 11

It Types (cont’d)

< Control flow faults
++»Addition of new source code block

<Deletion of erronecous conditionally-executed path(s)
within a source code block

<+ Addition of execution paths within a source code block

<*Redefinition of condition for execution (e.g. change “if i <
9” to “if i <=9”)

“*Removal of source code block

“*Incorrect order of execution

“»Addition of a procedure or function

“*Deletion of a procedure or function

AOWSM 97A0OWSM-97 slide 12

t Types (cont’d)

Control flow fault examples - removing
execution paths from a code block

\J \J
Counts as two faults, since two paths were
removed

AOWSM 97A0OWSM-97 slide 13

Ht Types (cont’d)

Control flow examplss (co«t’d) - additionof
conoitional executow paths to code block

\
Counts as three faults, since three paths were

added

AOWSM 97A0WSM-97 slide 14

Introduction of Faults

+ People make errors i» the interpretation of
their tasks

“System Analysts
“+Systems Designers
Programmers

+ These errors are manifested in
“»Specifications
“*Design
*Programs

as faults

AOWSM 97A0WSM-97 de 15

ts and Uncertainty

< Can never know when all faults have been
found

< May only use past experience to anticipate
fault cou «»t in any reasonabls manner
+ We seek to develop a fault surrogate
<+ Obtained estimate from past development efforts
“*Varies directly with faults
“+Anticipates distribution of faults in modules

AOWSM 97A0WSM-97 slide 16

it Granularity

+ The granularity of fault measurement must
be the same as other mstrics

+ Changes to cooe are measured at the module
levsl

«» Complexity measuremsnts are at the module
level

+ Configuration management is at the module
levsl

+ Faults should be maintained at the module
level

AOWSM 97A0OWSM-97 slide 17

)ping of Faults

< One fault - one module
“»Fault sxtent within single mooule

<« Ons fault - several modules
“¢*include problem
“*COMPOOLS
“+global data

AOWSM 97A0WSM-97

slide 18

RELATIVE

S

CORRELATED ORTHOGONAL
METR DOMAINS METRIC DOMAINS

AOWSM 97A0OWSM-97 slide 19

3 ection of Metrics for Fault
rrogate

+» Software metrics are highly correlated
« Selected for their relationship to faults

+ Principal components analysis used to
identify distinct sources of variation

+The ninsteen original metrics:

. 49 295 1509 858 356 379 460 106 135
10000 16 179 159 48 14 17 12 32
5 54 2 45 5

<+When standardized become:

. 3.15 173 097 0.68 238 1.04 1.44 1.60
1.47 242 5.64 3.78 3.70 2.10 1.13 -1.10
1.32 -0.52 1.41

»Standardized metrics are transforme® to become:
. 3.84 o089 0.54 -0.18

AOWSM 97A0WSM-97 slide 20

::mJ\ Measure of Software

<+ Each complsxity domain has a distinct
relationship with measure of faults

+ ldentify complexity comai »s that are closely
related to software faults

+» Compute domain metrics for each comple xity
domain so related

< Relative Complsxity is a weighted sum of the
domain metrics

AOWSM 97A0WSM-97 slide 21

putation of Relative Complexity

< For each program module, a sstof measurements
will be taken on selected metric primiti .ss

+» Transformation coefficients 7, will map the
standardized raw metrics z, onto a set of domain
metrics (factor scores)

+ A relativs complexity valle, p. will be comuted
for each program module as follows:

pP;: = M»\, AM NQ;VP»

AOWSM 97AOWSM-97 slide 22

lative Complexity As a Fault
rogate

+» Program modules may be ordered by relative
complexity

« The relative complexity of a software system is the
average relative complexity of the componsnt
mod oles

« Relative complexity is an extensible metric

+ Validation of the relative complexity concept
< Correlates well (0.90) with measures of software fauits

AOWSM 97A0WSM-97 slide 23

Relative Complexity As a Fault
urrogate

<+ If the relative complexity of a module is high then it
will contain a large number of faults

< The metrics that compriss relative complexity
were sslected because they were related to faults

<+ If the relative complexity of a mooule changes
during developmeut, then the number of latent
faults will also change

AOWSM 97A0WSM-97 lide 24

nple Hal/S Programs Ordered by
ative Complexity

Module Domain1 Domain2 Domain3 »p DR Count
1 -0.78 -0.01 0.36 43.36 0
2 -0.77 -0.02 0.36 43.37 0
3 -0.77 -0.02 0.35 43.37 0
4 -0.77 -0.02 0.34 43.39 0
5 -0.76 -0.03 0.34 43.40 0
6 -0.76 -0.00 0.31 43.53 0
7 -0.76 -0.00 0.31 43.53 0
8 3.16 3.27 2.55 95.44 9
9 7.57 -5.39 1.66 97.84 25
10 3.75 3.19 1.31 98.80 4
11 3.45 4.46 3.06 103.64 6
12 4.82 2.45 0.26 104.02 4
13 5.98 3.08 6.09 124.72 10
14 8.24 5.13 -0.86 144.42 15

AOWSM 97A0OWSM-97 slide 25

ware Evolution: Meascoring a
ing Target

< We assume that we are developing
(maintaining) a program

< We are really working with many programs
over time

+ They are different programs in a very real
senss

<+ We must identify and measure each version
of each program moduls

AOWSM 97A0WSM-97 slide 26

12 9plIs L6-NSMOV.6 NSMOV

(==
> _—V_)
COLDLD LD D LoD D LD LD D LD LD
-~ o-o-o-o-o-og o
o OO
=
[—F — 2}
===
| o e [e {
o
e
[=F =X’ LD kD
=3
=
o - -
[T v
(==
=
=3
=83 -

mg-o-c
—

=gy =
[T ¥ ¥)

8/11nys 9oeds ayj Jo UoIINjoAT &

+ Some faults are inserted during branch builds

+These fault counts must be removed when the branch is
pruned

<+~ Some faults are eliminated on branch builds

“*»These faults must be removed from the main sequence
build

<+ Fault count should contain only thoss faults on the
main sequence to the current build

<+ Faults attributed to modules not in the current
build must be removed from the current count

AOWSM 97A0OWSM-97 slide 28

selining a Software Development

+ Software changes over software builds
< Measurements, such as relative complexity,
change across builds

+ Initial build as a baseline
+ Relative complexity of each build

< Measure change in fault surrogate from initial
baseline

AOWSM 97A0WSM-97 ide 29

0€ opIIs L6-NSMOV.6 WSMOV

9jebolins jnej e si Alixajdwoo annejay
abueyo jo ainseaw e si Alixajdwo9 annjejay «

sabueys
olj1oads jo sainseaw aJe saljixajdwos urewoq

abueyd
Jo 9aibap 0} jeuoiiodoud si sjnej jo JoquinpN

sabueyd wa)sAs ylim paonpoujul ale sjney maN

b

elative Complexity

asuring Software Evolution by

Average Standardized RCM

S L e S R L L LR R R
50 - -—s—e - T
49.5 A
49
48.5
48
415 - |
Builds
AOWSM 97A0OWSM-97 slids 31

asuring Change in Fault
rogate

1.5

Average SRCM Deltas

Builds

AOWSM 97A0WSM-97 slide 32

e Fault Injection Process During
oftware Development

< Immediately after ths first integration test of a
software system its complexity will rise in relatioc.
to the baseline complexity of the system at ths first
build

< The complexity of most software systems will

continue to rise over most of the program's ussful
life

+ We are continually adding functionality to existing
software

<+ We are continually adding faclts to the software in
proportion to the complexity of the changss

AOWSM 97A0WSM-97 slide 33

selining Fault Assessment

N
+ Total system complexity is initially R — M.P
=1

<+ Initially each program module has a number of
faults proportional to the fault surrogate
+th

» st &, represent the proportion of faults in the :
modaule at ths first build

+ The fault potential of a module i is proportional to
its valle of the relative complexity fault surrogate

<+ Thus, . 5 Rw

AOWSM 97A0WSM-97 slide 34

anges to Faults

s Let L represent the total number of faults fo ond
at the /" build of the system

+ The i* module will have had // faults removed

+Then /- I/) represents the proportion of

1

faults removed in thsi” moduleon the j” buildof
the system

+ If the changes to code to fix faults have not
changed the fault surrogate measure, thsn the

u.o_uo:_o: of faults _‘mz_m_:_:m in the Ns moduleon
the /" build is 8/ =p,— g/

AOWSM 97A0WSM-97 slide 35

e of Fault Injection

< New faults will be injected into the system in
proportion to ths changs i» the fault surrogate

<+ The change relative complexity from build ; to build
j+1is A = _DN —piH!

i

<+ The total change over j .1 builds is

Jj+l

%N.\.i — D\M
< New estimate for proportion of remaining faults is
mwi _ .wm.i _ %\+

AOWSM 97A0OWSM-97 slide 36

cution Consequences of Faults:
flures

< A fault can only cause a failure if it is
executed

<+ Different functionalities execute differe »t
sets of modules

<+ Faults can be mapped to program
functionalitiss

AOWSM 97A0WSM-97 slide 37

FXM| m, m, | my | my | m; | mg
il T | T
f, T T T
1 T T T
fo | T T

AOWSM 97A0WSM-97 slide 38

ram Functionality

+ Users specify their needs in terms of a set of
operations, O

+ Programs impleme«t the operations in a setof
functionalities, F

+ The Software Requirements Specifications define a
set of relations on OXxF

<+ There is a relation IMPLEMENTS over OXxF
<+ IMPLEMENTS (o,f) is true if

“functionality f € F' is used to implement
<operation 0€ 0

AOWSM 97A0WSM-97 slide 39

xeification

IMPLEMSNTS (o,1)
OX Nﬂ \W \«M ,\.\w \A.
0, T T
o, | T T T

Operation O, is implemented using functions f, and f,

Operation O, 1s implemented using functions f,, f; and f,

AOWSM 97A0OWSM-97 slide 40

ctional Classification of
ogram Modules

<~ Some program modulss will execute regardless of
the functionality

M,={m :M|VfeFeASSIGNS (f,m)}

<~ Some program modules are indispensably
associated with a functionality

M" = {m :M,\Vf e F e ASSIGNS (f,m)= p(f,m) =1}

<~ Some program modules may potentially execute
when a given function is expressed

MY = {m :M,13f e F ¢ ASSIGNS (f,m) A0 < p(f,m)< 1}

AOWSM 97A0WSM-97 slide 41

lationship of Modules to

unctions
FUNCTION] M, M, M, M,
N...._ AE._V ASN_SAW A v ASALQ\HN“SAM o
f, {m} {m,} {m} {m,m,m}
o | (m) | O [(mum}]| {m,momy
fy {m} {m,} ﬁsm,smv A:?Ew mg, My,
where M, =M, CE.MD uM!

AOWSM 97A0WSM-97

slide 42

e opIIs L6-WSMOV.6 WSMOY

jelwoui}jnw si
ajijo.d jeuonesado ayy jo uonnquasip Aujiqeqoad ayyg <

aAIsn|oxa Ajjenjnw ale suonelado ayj «

1 uonesado ue Bunnoaxa
s1 Jasn 9y} eyl Aljiqeqoad ays si (‘o = 0)iq ‘Shul <

1osn e Aq
pajnoaxe Buiaqg suoijesado ayj Jo yoes jo sanijigeqoad
[euollipuodun }Jo 19s ay} SiI ajljoad jeuoneiradQ ayl

8/1J0.1d |euoIl.IE

ctional Profile

<+ The Fu«ctional Profils of the software is the set of
unconditional probabilities of each of the
functionalities being s<pressed by an operation

+Thos. Pr(F =) is ths probability that the system is
executing program functionality /

<+ The functions are mutually exclusiove
« The probability distribution of ths functional profile is

multinomial

AOWSM 97A0WSM-97 slide 44

ecution Profile

+ An execotion Profile is ths conditional probability
of executing a module i given a certain functionality j

+~Let Tr(M=m; | F=f) repressnt this probability for a
fixed functionality

<+ Underlying distribution is multinomial

+ This distribution is directly determined by the
program design

<+~ We must measure to determine the distribution

AOWSM 97A0WSM-97 slide 45

The Module Profile is the unconditional probability that
a module will be executed

Pr(M, N F)=Pr(M F,) =Pr(F,)Pr(M, | F)
Pr(M,) = M\.Eﬁﬁ_v
= M:.E@Eﬁ | F)

AOWSM 97A0WSM-97 slide 46

k Assessment with Fault
rrogate as o.oss Function

+ At each build, an estimate for the proportion of
remaining faults is &/ =p, - g/
+ Each functionality has a distinct execution profile p/
+ The functional risk of this executio« profile is
¢/ = M pd]
+ If a functionality is mxmncﬁmn_ that will run fault

prone modules with high probability, the risk
(failure potential) will be high

AOWSM 97A0OWSM-97 slide 47

<+ Functional standards for fault recording
+ Risk Assessment for software test

+ New methodology for regression testing
based on risk assessment

<+ New potential for modeling software
reliability

AOWSM 97A0WSM-97 slide 48

